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An algorithm is prasented for the rapid evaluation of certain func-
tionals of three-point correlation functions, measured in a plane.
This simplifies the estimation of effective physical properties of
composite materials from cross-sectional photographs via bounds.
More precisely, Fourier coefficients of a reduced three-point correla-
tion function are expressed as inner products of polyharmonic
fields. The polyharmonic fields are evaluated with a potyharmonic
version of the fast multipole method with a CPU requirement pro-
portional to the number p of fields included and to the number N
of points in a discretization of the component interfaces. The Fourier
coefficients are related to structural parameters which are used in
third-order bounds on conductivity and elastic proparties. Inclusion
of p polyharmonic fields gives structural parameters with an error
decaying at least as 1/7°. In a simple application for disks with p =
10, superalgebraic convergence in /N, and a high-order Gaussian
quadrature rule for the inner products, the algorithm gives an error
of typically 0.05%. A previous algorithm, involving Monte Cario
integration, gives structural parameters with an error of typically
2%. ®© 1995 Academic Press, Inc.

I. INTRODUCTION

How accurately can we estimate the effective physical prop-
erties of an isotropic three-dimensional composite, provided
that we know the physical properties of the components but
have only geometric information from cross-sectional photo-
graphs? A partial answer to this question has been known for
along time—it is in principle possible to find third-order bounds
on effective properties, that is, upper and lower bounds that
coincide to third order if they are expanded around homogene-
ity. In particular, for a two-component composite with compo-
nent conductivities o, and &, and bulk and shear moduli k;,
K3, M1, and ., bounds on the effective properties @ 4, k., and
e cAN be found that coincide to third-orderin o> — oy, k; — K1,
and g4, — .. These bounds involve two structural parameters
denoted {; and 7, which are functionals of a three-point correla-
tion function Q5 [1]. The function Q, can be measured from
cross-sectional photographs.

Unfortunately, it has not yet been possible to measure @,
with an error less than about 1% and to evaluate £, and »n, with
an error less than about 2%. The reason for this being, ameong
other things, the use of Monte Carlo techniques, for which the
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error decays as 1VM, where M is proportional to the size of
the problem, for example, the number of discretization points
used in an integral. See Berryman [2] for a discussion of
these difficulties.

In this paper we present a radically different algorithm for
the evaluation of £, and 7, from cross-sectional photographs.
We bypass the problem of estimating (; and go directly for §
and m, using interface integral techniques involving polyhar-
monic Green’s functions and the use of the fast multipole
method [3). As a result we get a method where the error decays
with 1/M according to some high-order integration rule and as
1/p* with the order p of the highest polyharmonic used. Numeri-
cal tests indicate that with p = 10 and extrapolation we may
be able to evaluate structural parameters with an error less than
0.05%. Interface integral techniques have previously shown
powerful for the evaluation of structural parameters and related
quantities when fuli, that is three-dimensional, geometric infor-
mation is available [4-101].

II. FOURIER EXPANSION OF PROBABILITY DENSITIES

With the use of variational techniques Milton [11] derived
third-order bounds on o.g, Ker, and ji; for a three-dimensional
composite that depend on volume fractions f; and f;, on compo-
nent properties oy, 0z, Ky, Kz, g, and y,, and on the two
structural parameters
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In Eq. (1) and Eq. (2} Py(u) and P,{u) are the second and fourth
Legendre polynomials, O(r, s, 6) is the probability of a triangle,
with two sides of length  and s at angle 6, having all three
vertices lie in component two when placed randomly in the
composite, and ¢5(r) is the probability of a rod of iength r
having both vertices lie in component two when randomly
placed in the composite.
Now introduce the reduced three-point probability density

_fo [ _ 0ANQus)\ drds
rey =" (Qs(r, 5, ) — S ) = 0
and its Fourier series coefficients
=3FR(9)COS(2n9)d9, =1 (@)
alo

Then substitution of variables and Fourier expansion in Eq. (1)
and Eq. (2) gives the series
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Since we expect R(6) to be at least continuous and piecewise
smooth, a, will decay at least as fast as |/n? and the error in
the series for £, and 7,, upon truncation after p terms, will
decay at least as fast as 1/p*. On the other hand, should we
know that R{#) is continuous, but not smoother, we also know
that the a, decay, asymptotically, as 1/n? and this can be used
for extrapolation; if a, are known up till # = m we assume
Gin = dumm + 1) and then sum Eq. (5) and Eq. (6) to
infinity. The power of such an extrapolation is shown in Table
I, where a, is given, as calculated by Helte [12], and extrapolated
and correct values for {; for a random aggregate of penetrable
spheres at £, = 0.7. As can be seen, with p = 10, the error in
{» is about 0.0004%.

III. FOURIER COEFFICIENTS AS INNER PRODUCTS

In this section we will show how to express the Fourier
coefficients a, of Eqs. (4)—(6) as integrals over one of the
components as seen on a cross-sectional photograph. We will
do this by rewriting the triple integral %, of Eq. (13) below in
two different ways: By partial integration of Eq. (13) with the
use of statistical averaging we arrive at Eq. (23) which contain
the Fourier coefficients a,. By partial integration of Eq. (13)
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TABLE I

The Fourier Coefficients a, of Eq. (4) for a Random Aggregate of
Penetrable Spheres at £, = 0.7, and Estimates for £, Based on the First
p Coefficients a, and Extrapolation

Id a, L5 rel. emr.
1 0.058684719 0.5589023 45107
2 0.011447608 (0.5834628 2.8-107?
3 0.004554246 0.584769% 54-10
4 0.002411184 0.5849880 1.7 - 10+
5 0.001485748 0.5850472 69-107°
6 0.001005338 0.585068% 33-10°
7 0.000724808 0.5850773 1.8-107
8 0.000547028 0.5850817 1.0 1073
9 0.000427373 0.5850840 6.3-107¢

10 0.000343038 0.5850853 4.1-10¢

Note. The relative error decreases rapidly. The correct value for {; is
0.5850876995. See Ref. [12] for details on how a, and ¢; were computed.

without the use of statistical averaging we arrive at Eq. (26)
which contains inner products of polyhartonic fields b,, evalu-
ated as integrals over component two. The formalism is a devel-
opment of the results of Corson {13], Milton [11], Milton and
Phan-Thien [14], and Helsing [9].

As a starting point consider a periodic composite in two
dimensions. If the composite is a suspension component one
denotes the matrix and compenent two denotes the inclusions.
The unit cell is rectangular with volume V. Introduce {Xr) as
the indicator function for component two and divide it into a
constant and & fluctuating part

Qr) = £ + () (7)

The Fourier expansion of £3(r) is

QD =f+ 2 wke™, (8)

el
where k rans over all reciprocai lattice points excluding the
origin.
Define the auxiliary quantity

k 2p
=ity 3 B o~k — myw(m) ()
k Om
and rewnite this
= (k : m)Z.D J(k+m+n)yt
vi = k#ﬂ j v B ———— a(K)@(m)@(n)e Tt 4y,

(10

Periodicity and Green’s second identity give
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==, Gmesav,, (11)

where V, is the unit cell excluding an infinitesimal disk around
the origin, r = 0, and G,(r) is the periodic Green’s function
for the polyharmonic operator

2 — 2yt —-r
Gp(r) = 2 — ('r 4r||2) 108 |l' r,|2 (12)

= da((p— DY

In Eq. (12) the lattice vector r; runs over the entire plane,
Equaticn (10) and Eqg. (11} give

V%= %/Jv fv Iv GAr)Gyls)
o (13)
o

2
{(_ : i) Q' +00(s+ t)ﬂ(t)} dV,dVdV,.
Jr ds

Repeated application of Gauss’ theorem, integration over ¢,
and the periodicity of G,(r) and }'(r) give

V5 =1+ b, (14)
where
2p-1 G,E‘(I‘)Gf;‘(S)}
j j {(ar as) (15)
(m, - n K ()Y (8)U0); dS.dS,
and
- 9.8\
b= Jv, fvm {(ar as) G,,(r)G,,(s)} (16)

€' (1Q ($)0)) dV,dV;,

where V., denotes the entire space and angular brackets denote
volume average. Recursion gives

a a -1 i i (l' . S)Zp—l
(5 I) GG = 4mms D
from which follows
3 P S X 2(1‘ S"Zp
(E'a_) GHOGHS) = T
(18)

_p(2p — )(r-s)¥?
sy
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The first integral on the right-hand side of Eq. (14) can be
evaluated with Eq. (17) to

L= G”)%.

Rewrite the second integral on the right-hand side of Eq.
(14) with Eq. (18) as

2pY (= = frcos[2(p — n)f]
= par 1Z(P_”)2(n)[of%[0—?s—

QO (NY' (5, 0)) drddsdd,

(19)

(20)

where the arguments (0), (r), and (s, 8) imply evalnation at the
vertices of a triangle with two sides of length + and s and
included angle €. Then Eq. (7) can be used to show that for
any two-component material

QO (NQ (s, 0 = Gl 5. 0) — L O(r) — HO:s) + f3
2n
which gives with Eq. (4)
1
DI g P 22)

and from Eq. (14}

Y {2pY L, 1 & (2
Yﬁ=5(;)fifz+F§(P_") (kp)ap-n- (23)

Now rewrite Eq. (13) in a different way. Repeated application
of Gauss’ theorem gives

w=tl L& 2

(n,dS, - n,dSHUL) av,,

*

p(r)Gp(S)}
(24)

where B is the interface between the components and n, and
n, are normal vectors on B directed outwards from component
two. Introduce the complex polyharmonic fields

_ [ @tz -1 cos 8.dS,
¢p(f) = E Jﬁ' S EE—-Y

; (25}

where cos 6. is the angle between the outward normal on B
and an arbitrarily chosen reference direction, and z; are lattice
vectors. With Eq. (17) we obtain
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18 2p -1
ﬁ—;w(n ﬁm, (26)
where b, is the integral over component two,
— 2 y
b= [, H@@UD V.. @n

The fields ¢, of Eq. (25) can be seen as caused by “‘polyhar-
monic charges’ placed on the interface B.

In the next section we will show that, ctose to a point z, it
is convenient to represent a polyharmonic field, such as ¢, of
Eq. (25), on the form

@m=2§4%m%ﬂm
o (28)
Z —Z+ )"

= —z+z(1)"

where the first sum is a local expansion of the part of ¢, that
originates from integrals over interfaces that are far away from
zy, and the second sum is a discretization of the contribution
10 ¢, from interfaces that are close to z,. If ¢, of Eq. (25) is
expressed as a local expansion only, the contribution to b, of
Eq. (27) can be evaluated as an interface integral

mtk+1

bongm == E E hnkhmjj oRe{Z"Hﬁ;} Re {szk'_l:T} dSz

nm Q& j=0

(29)

Identification of Eq. (23) and Eq. (26) gives the system of

linear equations
2p ) 2 (219 -
a=
— R =l \ D —

from which the Fourier coefficients a, can be expressed in the
inner products b,, of order m < n.

(2") ffz-i-4in2 l)bn, (30)
P n=1 n

IV. FAST EVALUATION OF POLYHARMONIC FIELDS

In this section we will present the tools necessary to evaluate
the polyharmonic interface integrals ¢, of Eq. (25) with the
fast multipole method. The treatment follows Greenbaum,
Greengard, and Mayo [15] for a biharmonic field. We therefore
only state results.

Suppose that m points z, are located within a disk of radius
R centered at the origin. Then, for a point z with {z| > R, the field
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)
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B0 = 3 LED Gn

can be represented by a polyharmonic expansion of the form

1S k= A
by =2 > — 5, (32)
#=0 k=p n.z
where
o gl
AL = 2{ TR (33)
Translation of a far field expansion: Suppose that
S k= DAE )
bp{2) = Z 2 : ; (34)

n=0 k=p HI(Z - -O)
is a far field expansion of Eq. (31) due to a set of m sources
of strengths q,, ¢, .... g., all of which are located inside the
circle D of radius R with center at z,. Then for z outside the
circle D, of radius R + {zg| and center at the origin,

-1 )'BE-;“Z"

s0= 3% D0

(35)

where

AlZ g'jrzn) Z_{) (36)
Conversion of a far field expansion into a local expansion:
Suppose that Eq. (31) is the polyharmonic field from charges
at the points z;, z,, ..., Z» all of which are located inside the
circle Dy with radius R and center at z, and that |z > (¢ +
1)R with ¢ > 1. Then the corresponding far field expansion of
Eq. (34), truncated at order w, converges inside the circle D,
of radius R centered about the origin. Inside D, the truncated
far fieid expansion is described by the power series

—1 w—n +i lZn
B(z) = (—1) EkEO S e LEE (37
where
B R D o (N
=0 j=0 iz5

Translation of a local expansion: Suppose that
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— 1 w—n Cp T oy -z k
‘;bp(z) - (_l)pE 2 P+ (Z 'Zu,) (z o) ) (39)
7=0 k=0 n'k!
Then
Sk n+ + Zk
$2) = (=1 2 s DT (40)
where
S JC:+;+, )’
2 __(,...Z”)__)_ 410

= il

The preceding results enable the implementation of the fast
multipele method fully analogous to the description in
Greenbaum, Greengard, and Mayo [ 15]. Furthermore, it follows
from our particular choice of indexation that for series of fields
@, , where the charges g, and positions z; of Eq. (31) are indepen-
dent of p, the coefficients A;, Bf, C%, and I} will be independent
of p as well. This means that fields ¢, of different orders p can be
evatuated simultaneously with a reduction in the computational
cost. More precisely, the work of evaluating p fields ¢, becomes
proportional to p, rather than to p?, which holds if this simplifi-
cation is not utilized. Clearly, the series of fields ¢, which
result from discretization of Eq. (25) are of this type.

V. NUMERICAL EXAMPLE FOR DISKS

The fast multipole method in two dimensions has been imple-
mented by various research groups in different varieties. For
example, there are implementations for both free-space and
periodic evaluations suitable for uniform distributions of har-
monic charges [3] and there is a so-called adaptive code suitable
for evaluations when harmonic charges are not uniformly dis-
tributed [16]. For uniformly distributed biharmonic charges
there is a free-space code [15].

The evaluation of ¢, of Eq. (25) for general photographs
with the method of the previous section requires an adaptive
polyharmonic fast multipole code. Adaptivity is needed, since
the charges will be lined up on the component interfaces, and
not uniformly distributed in the plane. The programining of
such an adaptive potyharmonic code, however straightforward,
is quite a demanding task. As a numerical example and as a
check on the algorithms presented [ will here treat a model for
which simplifications in the programming can be made: a cross
sectional photograph that looks like a square array of disks,
with unit cell of unit length, where the disks have radii R and
occupy a volume fraction f; and where one disk is centered at
the origin. Note that this model is somewhat artificial, since it
does not correspond to the photograph of a composite that is
statistically isotropic.

The field ¢, of Eq. (25) at the disk at the origin can be
represented on the form of Eq. (28) in two different ways,; the
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contribution from all disks in the plane can be treated as a far
field represented by a local expansion, or the contribution from
those eight disks that are nearest neighbours to the disk at the
origin can be treated with direct interaction through discretiza-
tion of the integral of Eq. (25), a near field, while the contribu-
tion from all other disks is treated as a far field represented by
a local expansion. Should we choose to distinguish between
far field and near field in this way we may place m discretization
points z,, according to the trapezoidal quadrature rule, on each
of the eight nearest neighbour disks. This gives for z inside the
disk at the origin

=1 w E&s n( Z)" &
+ ptk
B =t R T
. (42)
o 2Rcos 6, (z, —)°!
+ .
r;—l m (z. — 2)*
where &, is the Kronecker symbol,
E = 2 Z)H' (— D + IS
=0 \T Mr—i— DI+ 1)
(43)

-l (_2) (—1)(s + i = 2855,
i\m) ir—i-DIGE-HY’

é, is the angle between the real axis, used as reference direction,
and the interface normal direction at z, and

= Zp-l

zf
P = Pl I
S" z a—ptl

s=10 L5

(44)

are lattice sums; the lattice vector z, runs over all lattice points in
the plane, excluding the origin and its eight nearest neighbours.
(Should we choose to represent ¢, of Eq. (42) as a far field
only, the eight nearest neighbours should be included in the
lattice sum, as well.) The series of lattice sums ! was intro-
duced in composite literature by Rayleigh [17]. The series 53
has previously been used by myself for elasticity calculations
[9].

Should we choose to represent ¢, of Eq. (42) as a far field
only Eq. (29) with p = 1 gives

bl = 2
(45)
- - 2 4k
(f%fz + £ @k — 1) (4 + (4k_]) + S«]u) (Jé) )
k=1 T
and withp = 2
b= 'S S EEEHAID U D G

nlklqliltk + g + 1)

#q=0 kj=0
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TABLE II

Numerical Values of the First Nonvanishing Lattice Sums 5%,,, of

JOHAN HELSING

TABLE IV

Numerical Values of the First 10 Numbers ¥, for a Square Array

Eq. (44) of Disks at f, = 0.7
Si 3.15121200215390 Eq. (9} Eq. (26)
St 5.03066621465737

St 3.44188692377912 v¥ 0.057474 0.057470732425347
Sk 5.4947062432777 vE 0.058993 0.058990471293056
A 3.0302835730502 vE 0.060257 0.060254670947136
¥ 0.061064 0.061062899186933
Note, The calculations are made with a simplified version of the fast multipoke ¥E 0.061616 0.061615676270128
method, and the first eight digits of each sum is checked with direct summation, v 0.062053 0.062053566530432
For a discussion of fast algorithms for lattice sum evaluation, see Ref. [19]. v 0.062449 0.062450404733132
i 0.062839 0.062839944694868
vh 0.063233 0.063235068725672
For the evaluation of Eq. (46), as well as for the implementa- vh 0.063637 0.063638686495525

tion of a general periodic polyharmonic fast multipole code, p
of the series of lattice sums S% with » = 2p must be computed.
For n = 2p + 4 these sums are easily computed by direct
summation. For # = 2p + 2, and if the sum does not vanish,
the convergence of the direct summation will be very slow. In
Table II we present the first five nonvanishing sums S%,.; calcu-
lated with a polyharmonic analogue to the simplified fast
multipole method used previously [7]. In short, this algorithm
computes the far field expansion outside supercells including
an exponentially growing number of charges. This is done by
recursion of Eq. (39) and Eq. (40). The contribution to the
lattice sums from various far fields is computed with Eq. (37)
and Eq. (38).

For n = 2p the lattice sums of Eq. (46} are only conditionally
convergent and we assign the physically relevant values to
them by demanding periodicity of the field that results from
unit polyharmonic charges Z7~'/z# placed at every lattice point

[3]. Equating the fields at, for example, z = 3 and z = —}
gives
(z. — 0.5 {(z, + 0.5)""
47
Z‘T (z, — 0.5)* 2 (z, + 0.5)7° 47
and by series expansion
TABLE IIT

Numerical Values of the First 10 Conditionally Convergent Lattice
Sums 55, of Eg. (44), Computed According to Eq. (48)

51 3.1415926535898K
53 2.0784511611614
¥ 1.0471975511966K
51 0.7903136267083
S 0.62831853071795K
|3 2.3581519979779
57 0.44879895066288K
S5 2,9191682611277
5% 0.34906585051680K
sy 0.8271159154874

Note. K is a conjugating operator. The numerical values for §}and §3 coincide,
to the last digit, with results of Ref. [9].

Note, The left column comes from Eq. (9) using &, m = 200 and linear
extrapolation. The right column is Eq. {26) with Eq. (46).

4 19518 (5) )(p (—1)?8m
_+_
4 pjz,;, ] , 2t
_li(pmn) 8§82

pri\2n+1 4’

where the tilde over S means that a contribution from nearest
neighbour lattice points are included in the sum. Equating the
fields at z = i/2 and z = —i/2 gives an expression similar to
Eq. (48), but which differs in terms of signs. To resolve this
inconsistency we propose that for odd p a conjugating operator
K should be attached to the sum S3,. When this is done the
sums of Eq. (48) become independent of the choice of the pair
of points for field evaluation. Furthermore, it has been shown
previously that for calculations on disks the sum S} should
indeed include a conjugating operator {7]. The 10 first sums
§8,, without contributions from nearest neighbours, are pre-
sented in Table IIL

When the field ¢, of Eq. (42) is represented by a far field
only, the evaluation of the sums for b, of Eq. (46) is quick,
but many terms in the local expansion are needed which will
eventually limit the accuracy for large p due to cancellations.
As a check on most of the expressions derived so far, I computed
the quantities v in two independent ways, first according to
Eq. (26) with Eq. (46}, far field only, and local expansions up
to order 80 aiming at full accuracy—then according to Eq. (9)
using k, m = 200 and linear extrapolation aiming at four-digit
accuracy. Results for f; = 0.7 are presented in Table 1V. For
b, up to p = 10 and the first method of computation typicaily
required 10 s on a workstation while the second method required
several days. In Table V we present the coefficients &, and a,
computed via Eq. (46) and Eq. (30) and extrapolated values
for &;.

If the field ¢, of Eq. (42) is represented by a sum of a far
field and a near field computed with direct summation, the local

(48)
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expansion of the far field at the origin will converge quicker
than if ¢, is represented by a far field only. Fewer terms in the
local expansions are needed for a prescribed accuracy. But if
100 many discretization points are included in the the near ficld
zone, much time will be spent on summation and the evaluation
f b, of Eq. (27) with Eq. (28) becomes slow. In Table 5 we
also give b, for the square array of disks at f; = 0.7 computed
with 40 terms in the local expansion and 400 equispaced discret-
ization points on each of the eight disks that are nearest
neighbours to the disk at the origin. The general purpose NAG
subrouatine DO1DAF, based on a family of Gaussian quadrature
rules, was used for b, with between 3000 and 12,000 integrand
evaluations per integral. These computations took from 2 to 8
min per integral on a workstation.

YL. FURTHER IMPROVEMENT FOR THE
CONDUCTIVITY

Once the structural parameter ¢; of Eq. (5) has been com-

puted, third-order lower and upper bounds on the effective
conductivity of the composite can be evaluated according to

low (o + 2a)(0y + 2(fi00 + o)) — 2filo(0 — ov)

T NG ¥ 2020, + o + fio) — 2h00s — o
(49)
and
—_ 2
o_gﬁ_ — (ﬁal +f:9_0-2) . .f].fi((fz O'I) (50)

3oy + (fi + 2000 — 0'1)1
where in Eq. (49) o, = 0, 1s assumed |1, 18]. For small ratios

TABLE VY

Interface Integrals b, of Eq. (27) and Fourier Coefficients a, of Eq.
(4) and Eq. (30) for a Square Array of Disks at f; = 0.7

p o % a, fye
i 0.22088292070139 0.02597073242535 0.24734
2 0.23419875158474 0.25419875 0.009394738867709  0.22523
3 0.28647588568042  0.28647589  0.003782223994363  (.22619
4 0.242694660026405  0.24260467 0.001664603210422 022686
5 0.27912431724715 0.27912431 0.001725897117801  0.22618
6 0.3928115271342 0.39281133 0.0¢1529318162182  (0.22502
7 0435350221458 0.43535022 0.0010975939087 0.22594
8  0.37487493071 {1.37487495 0.000624009940 0.22606
3 0.3541217952 035412180 0.000599923613 {.22600

10 0403978968 0.40397897  0.00052400929 0.22599

Note. The b} are computed with ¢, of Eq. (25) represented as a far field
only. Local expansions of order 80 were used. The b are computed with ¢,
represented with a sum of & far field and a near field as in Eq. (42). Four
hundred discretization points per disk and local expansions of order 40 were
used. The extrapolated estimates for £, of Eq. {5) are based on the pth coefficient
a, and on the assumption that a, decay like 1/p*,
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FIG. 1. Bounds on the effective conductivity of an assumed isotropic
composile from cross-sectional information. Curves A and C are the upper
and lower third-erder bounds of Eq. (49) and Eq. (50) with {; computed with
the method of this paper. Curve B is the effective conductivity computed
with Rayleigh’s method as if the composite was translationally invariani and
constitutes a lower bound. A square array of disks with disk area fraction
S = (.7 is used as photograph,

{o» — o)/ (op + o) these bounds are tight and give a useful
estimate. If the conductivities of the two components ditfer
more, the bounds are not so informative. Then, to get a possibly
improved lower bound, we may proceed to calculate the effec-
tive conductivity of the cross-sectional photograph as if it were
a so-called fiber reinforced material, that is, translationally in-
variant in the direction perpendicular to the cross-sectional
surface. Clearly, if one of the component forms a connected
path across the photograph, and if this component has high
enough conductivity, the transverse effective conductivity of
the cross-sectional surface will be a better lower bound than
Eq. (49).

Accurate calculations of the effective conductivity of two-
dimensional suspensions with inclusions that do not lie too
close to each other have recently been performed by Greengard
and Moura [6]. They used an integral equation method that
was accelerated with iterative techniques and the fast multipole
method. Rayleigh’s method [17], which is easy to implement
but works for suspensions of disks and spheres only, can also be
accelerated in a similar manner [7]. We computed the effective
conductivity for the square array of disks at f; = 0.7 when the
disks have unit conductivity, o, = 1, and the surrounding matrix
has a conductivity o, that varies from unity to 25. This was
done with Rayleigh's method. Comparison with the bounds of
Eg. (49) and Eq, (50) with {; from Eq. (5) is shown in Fig. L.
We see that in our example this computation gives an improve-
ment over the bound of Eq. (49) for oy/on = 14.

VIL. DISCUSSION

We have presented a new algorithm to evaluate structural
parameters of statistically isotropic composites from cross-sec-
tional photographs. In particular we discussed the structural
parameters {; and 7; which enter into third-order bounds on
the conductivity and elastic moduli of two-component compos-
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ites [1], but the algorithm also applies to the evaluation of
structural parameters for multicomponent composites.

A previous algorithm [2] first estimates a three-point correla-
tion function Q(r, 5, ) by direct measurement in a photograph,
and then computes £, and 7, by indefinite three-dimensional
Monte Carlo integration in Eq. (1) and Eq. (2). The error in
this algorithm decays as 1/VM, where M is the number of
discretization points and a typical accuracy is 2%. Our algo-
rithm discretizes the component interfaces, as seen on the photo-
graph. Polyharmonic fields, ¢,, are evaluated with a polyhar-
monic version of the fast multipoie method. Fourier coefficients,
a,, related to @, are computed via inner products, b,, of the
¢, over one of the components. The work for the evaluation
of all the ¢, is proportional to p/, where p is the index of the
highest ¢, used and N is the number of discretization points
on the component interfaces. The work for the evaluation of
the two-dimensional integrals &, may depend on the shape of
the boundary interfaces. But, in principle, by subdividing the
region of integration into subregions, one should always be able
to evalvate b, with some high-order integration rule. Finally, the
parameters £, and 7, are expressed as a sum over the a,. Upon
truncation of these sums after p terms the error in ; and 7,
decays at least as fast as 1/p’.

We discussed two numerical examples. First the random
aggregate of permeable spheres, for which the three-point corre-
lation functions ,, structural parameters £, and ¥, and Fourier
coefficients a, can be computed accurately with another method
than that of this paper [12]. We observed, see Table I, that a,
decayed smoothly as 1/, This, in tumn, could be used for very
accurate extrapolation; 10 coefficients @, gave ¢ with an error
of only 0.0004%. Then we considered a photograph that looks
like a square array of disks, This example is somewhat artificial
since it does not correspond to a cross-sectional photograph of
a statistically isotropic three-dimensional composite, but it has
the advantage that it can be solved with only a moderate pro-
gramming effort. As can be seen in Table V the coefficients
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a, decay as 1/p?, but not at all as smoothly as in Table I.
Consequently, the error in the extrapolated ¢, may be of the
order 0.05%. It is tempting to believe that 4 smooth 1/p* decay
of a, is the typical behaviour for a statistically isotropic material.
If so, the accuracy of our algorithm may be much better than
claimed in the introduction.
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